О новом способе самоорганизации супрамолекулярных волокон

Математическая модель молекулы альтернативного наномотора для нанесения тонких полимерных нитей. Математическая модель молекулы альтернативного наномотора для нанесения тонких полимерных нитей.

Исследователи из Японии смогли вырастить исключительно длинные супрамолекулярные липофильные гелеобразные волокна с помощью метода самоорганизации в микрокапиллярных каналах. Новый метод позволяет создавать супрамолекулярные нити, длина которых достигает 1 метра, эти нити предполагается использовать в качестве шаблонов для производства токопроводящих полимеров.

Обычные методы получения супрамолекулярных гелей проводятся в массе и обычно приводят к образованию спутанных клубков нанонитей, связанных друг с другом за счет водородных связей, π-π-взаимодействий и ван-дер-Ваальсовых дисперсионных взаимодействий, и этот набор межмолекулярных взаимодействий препятствует образованию макроскопических самоорганизованных систем. Исследователи из группы Соджи Такеучи (Shoji Takeuchi) из Университета Токио смогли обойти эти затруднения, выращивая гель в микрокаппилярных каналах и одновременно стабилизируя их структуру с помощью более жесткого по природе геля.

Раствор мономера для образования полимера помещали в микрокапилляр, куда также добавляли альгинатный гель, игравший роль укрепляющей жидкости. Введение в поток раствора хлорида кальция приводило к быстрому протеканию реакции гелеобразования. По словам Такеучи, для нового метода очень важно быстрое гелеобразование, а альгинатный золь (коллоидная система, содержащая очень небольшие по размеру частицы) образуется практически немедленно от контакте исходных материалов с ионами кальция.

1322107613eecc4.jpg Рис. 1. Альгинатный гель, применявшийся для
покрытия растущих волокон, позволил исследователям
вырастить исключительно длинные нити. (Рисунок из
Angew. Chem., Int. Ed., 2011, DOI: 10.1002/anie.201104043).

С помощью липофильных красителей и флуоресцирующих нанобусин исследователям удалось визуализировать как супрамолекуклярные нити, так и гелевую оболочку, применявшуюся для их выращивания соответственно; микроскопия позволила установить направление роста формирующихся нановолокон. Подобные системы были получены и без гелевой внешней оболочки, но в отличие от систем, полученных в присутствии геля, он отличались значительной хрупкостью.

Длину растущего жгута нановолокон можно регулировать, изменяя скорость инъекции исходных материалов в микроканал, при определенных условиях можно добиться выращивания системы длиной в 1 метр. Такое волокно вытянули из реакционного сосуда с помощью обычного пинцета (см. видео).

Высокая прочность супрамолекулярных волокон, полученных новым способом, позволяет использовать их в качестве шаблонов для синтеза полианилина с помощью метода окислительной полимеризации. Мономеры удерживаются в волокне за счет непрочных межмолекулярных взаимодействий, что приводит к образованию полимера без агрегации полимерных нитей. Образовавшиеся в результате такой темлатной полимеризации волокна полимера также оказались достаточно прочными для того, чтобы с ними можно было бы работать с помощью щипцов, электропроводность образующегося полимера достаточна для его применения в создании сенсоров.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (5 votes)
Источник(и):

1. chemport.ru