Физики создали гелевый материал, способный двигаться против течения

Группа физиков под руководством Звонимира Догича из университета Брандейса в городе Уолтхэм попыталась использовать подобные нити для создания особых искусственных материалов, способных двигаться таким же образом, что и живые организмы.

Одной из отличительных черт живых организмов является их способность двигаться в произвольном направлении, в том числе и при противодействии среды. Одноклеточные организмы и бактерии двигаются по питательной среде при помощи белковых микротрубочек в их жгутиках или псевдоподиях.

Эти микротрубочки состоят из белка тубулина, способного к растяжению или сокращению, что позволяет организму совершать движения.

Группа физиков под руководством Звонимира Догича (Zvonimir Dogic) из университета Брандейса в городе Уолтхэм (США) попыталась использовать подобные нити для создания особых искусственных материалов, способных двигаться таким же образом, что и живые организмы.

Для этого ученые извлекли отдельные «детали» этого механизма из живых клеток — белковые микротрубочки и белки из семейства кинезинов — и попытались превратить их в молекулярный двигатель. Для этого ученые добавили в раствор молекулы другого белка — стрептавидина, который «сшивал» отдельные трубки и присоединенные к ним хвосты кинезинов в «связки» из микротрубочек.

Затем исследователи объединили отдельные «двигатели» из микротрубочек в единое целое, смешав их с набором из полимерных спиралей. По словам ученых, подобная конструкция достаточно устойчива с химической точки зрения и сохраняет стабильность в течение продолжительного времени.

Ученые проверили, работает ли их изобретение, добавив к раствору с «двигателями» универсальный источник энергии в живых клетках — молекулы АТФ. В результате этого молекулы кинезинов начинали двигаться по цепочкам тубулина, вынуждая их менять свою форму и расположение.

Убедившись в наличии активности, авторы статьи решили проверить, как поведут себя микроскопические капли геля, внутрь которых будут встроены молекулярные «моторы». Догич и его коллеги изготовили несколько таких частиц и выпустили их на поверхность маслянистой жидкости.

Оказалось, что гелевые капли диаметром в несколько десятков микрометров достаточно активно двигались — в общей сложности каждая частица преодолела около 250 микрометров пути за 33 минуты движения. Относительно скромная дистанция движения объясняется тем, что капли в большинстве случаев двигались не по прямым линиям, а по кругу. По словам ученых, скорость движения таких капель можно менять, увеличивая или уменьшая концентрацию молекул АТФ в растворе.

В своих следующих работах Догич и его коллеги попытаются найти способ управлять направлением движения капель. Поиск ответа на данный вопрос поможет понять, как живые клетки научились двигаться в конкретном направлении, заключают ученые.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (4 votes)
Источник(и):

1. РИА Новости