Дорогие читатели, Нашему шестнадцатилетнему, волонтёрскому и некоммерческому проекту для создания новой, современной версии N-N-N.ru, очень нужно посоветоваться касательно платформы нашего сайта – SYMFONY & DRUPAL 8. Платформа не простая, но обещаем – мы не займём много времени, просто нужна консультационная поддержка квалифицированного разраба. Если вы можете помочь, то связаться с нами можно на страницах Facebook.com здесь и здесь.

Ученые управляют магнетизмом при помощи электрического поля

Способность контролировать магнетизм материалов, используя только приложенное внешнее напряжение, в перспективе будет иметь важное значение для создания маломощных спинтронных устройств. Хотя в этой сфере уже достигнут значительный прогресс, процесс переключения ферромагнетизма при комнатной температуре оказался довольно трудным. Однако в своей последней работе совместная научная группа из Франции и Германии показала, что это все-таки возможно для пленок из FeRh, которые «переключаются» из антиферромагнитного состояния в ферромагнитное при помощи воздействия напряжения всего в несколько вольт.

Идея переключения намагниченности при помощи только лишь внешнего напряжения впервые была предложена еще в 1960-е годы в рамках работ по исследованию магнитоэлектриков и мультиферроиков. С началом нового века научный мир вновь проявил интерес к этим материалам, соответственно, проводятся новые эксперименты в этой области.

В частности, совместная группа ученых из Paris-Sud University, Thales University (Франция), а также их коллеги из Германии изучили поведение пленок из FeRh толщиной около 20 нм.

FeRh представляет собой магнитный материал, который отличается специфическим переходом от антиферромагнитного к ферромагнитному состоянию по мере повышения температуры от комнатной до 100 градусов по Цельсию. Для подробного изучения пленки из этого материала исследователи наносили ее на сегнетоэлектрическую подложку из титаната бария, а затем наблюдали, как внешнее напряжение изменяет магнетизм пленки.

Исследователи обнаружили, что

даже сравнительно небольшая напряженность электрического поля увеличивает температуру магнитного перехода в FeRh на 25 градусов по Цельсию. Этого оказывается вполне достаточно, чтобы преобразовать FeRh из антиферромагнитного состояния (с очень малой намагниченностью) в ферромагнетик с большой намагниченностью при комнатной температуре. По мнению ученых, этот гигантский магнитоэлектрический отклик формируются в первую очередь благодаря механическим деформациям, которые вызывает приложенное напряжение.

Надо отметить, что между 7 и 130 градусами по Цельсию титанат бария, использовавшийся в эксперимента в качестве подложки, имеет тетрагональную структуру с элементарной ячейкой, вытянутой в одном направлении, вдоль которого ориентируется сегнетоэлектрическая поляризация.

При включении внешнего напряжения между верхней и нижней поверхностями в описанной системе, отдельные домены увеличиваются в размерах, пока вся подложка не превращается в один большой домен. В результате пленка FeRh испытывает деформацию сжатия, которая и способствует проявлению антиферромагнитного состояния, устойчивого в широком диапазоне температур.

При повышении температуры выше комнатной, пленка FeRh проявляет антиферромагнитные свойства при высоком напряжении, но становится ферромагнетиком, если напряжение выключено.

Как считают ученые,

такое поведение связано с изменением межатомных расстояний в пленке FeRh, подвергшейся деформации. Межатомные расстояния в антиферромагнитной структуре меньше, нежели в ферромагнитной (за счет квантово-механических взаимодействий между электронными спинами в материале). Поэтому при искусственном сближении атомов через деформацию напряжения, изменяется энергетический баланс между двумя состояниями в пользу антиферромагнитного.

Как считают исследователи,

полученный ими результат может открыть большие перспективы для гибридных (или композитных) мультиферроиков, в которых сочетаются слои сегнетоэлектрических (или пьезоэлектрических) материалов, а также материалов, характеризующихся наличием переходов между различными магнитными состояниями.

Подробные результаты работы ученых опубликованы в журнале Nature Materials.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 4.9 (7 votes)
Источник(и):

1. nanotechweb.org

2. sci-lib.com