Дорогие читатели, Нашему шестнадцатилетнему, волонтёрскому и некоммерческому проекту для создания новой, современной версии N-N-N.ru, очень нужно посоветоваться касательно платформы нашего сайта – SYMFONY & DRUPAL 8. Платформа не простая, но обещаем – мы не займём много времени, просто нужна консультационная поддержка квалифицированного разраба. Если вы можете помочь, то связаться с нами можно на страницах Facebook.com здесь и здесь.

Сделан важный шаг к созданию самообучающихся вычислительных систем

Ученые НИЦ «Курчатовский институт» продемонстрировали возможность обучения мемристивных наноструктур определенного типа по биоподобным правилам. Полученные результаты открывают возможности для создания автономных нейровычислительных систем с весьма низким потреблением энергии, в перспективе способных обучаться решению сложных когнитивных задач.

Создание таких систем позволяет ответить на большие вызовы, сформулированные в Стратегии научно-технологического развития России, в частности в области перехода к передовым технологиям машинного обучения и искусственного интеллекта. Исследование опубликовано в журнале Microelectronic Engineering.

Мемристоры — это резисторы, умеющие запоминать значение электрического сопротивления под воздействием электрического поля или тока выше определенной пороговой величины. Их название происходит от английских слов memory и resistor — резистор с памятью. Мемристоры являются аналогами биологических синапсов, которые соединяют нейроны в живых нервных сетях и обладают похожей «пластичностью», то есть могут изменять свою пропускную способность для нервных импульсов.

Очень важно, что мемристоры с помощью нанотехнологий можно миниатюризировать до единиц нанометров. Кроме того, в отличие от электронных устройств мемристоры потребляют мало энергии, поскольку она не требуется им для поддержания текущего состояния, а необходима лишь для его изменения.

В НИЦ «Курчатовский институт» впервые изучили возможность обучения мемристивных наноструктур по биоподобным правилам, зависящим от времени прихода импульсов (Spike-Timing Dependent Plasticity – STDP).

В работе были использованы мемристивные наноструктуры на основе пленок стабилизированного иттрием диоксида циркония ZrO2(Y), разработанные в ННГУ им. Н.И. Лобачевского.

Специалисты Курчатовского института исследовали динамическую пластичность мемристоров. Оказалось, что форма изменения проводимости в зависимости от временной задержки между импульсами согласуется с правилами обучения типа мультипликативного STDP.

«Такого рода системы обладают экстремально малым энергопотреблением и могут существенно превосходить по скорости обработки информации современные вычислительные системы, базирующиеся на архитектуре фон Неймана при выполнении перечисленных когнитивных функций», — сообщил один из авторов исследования, директор-координатор по направлению Природоподобные технологии НИЦ «Курчатовский институт», и. о. начальника лаборатории технологий искусственного интеллекта Курчатовского комплекса НБИКС-природоподобных технологий Вячеслав Демин.

Пожалуйста, оцените статью:
Ваша оценка: None Средняя: 5 (2 votes)
Источник(и):

Индикатор