Дорогие читатели, Нашему шестнадцатилетнему, волонтёрскому и некоммерческому проекту для создания новой, современной версии N-N-N.ru, очень нужно посоветоваться касательно платформы нашего сайта – SYMFONY & DRUPAL 8. Платформа не простая, но обещаем – мы не займём много времени, просто нужна консультационная поддержка квалифицированного разраба. Если вы можете помочь, то связаться с нами можно на страницах Facebook.com здесь и здесь.

Создание надёжного и проверяемого ИИ: соответствие спецификациям, надёжное обучение и формальная верификация

Ошибки и ПО шли рука об руку с самого начала эпохи программирования компьютеров. Со временем разработчики выработали набор практик по тестированию и отладке программ до их развёртывания, однако эти практики уже не подходят к современным системам с глубоким обучением.

Сегодня основной практикой в области машинного обучения можно назвать тренировку на определённом наборе данных с последующей проверкой на другом наборе. Таким способом можно подсчитать среднюю эффективность работы моделей, однако важно также гарантировать надёжность, то есть приемлемую эффективность в худшем случае.

В данной статье мы опишем три подхода для точного определения и устранения ошибок в обученных прогнозирующих моделях: состязательное тестирование [adversarial testing], устойчивое обучение [robust learning] и формальную верификацию[formal verification].

Подробнее
Пожалуйста, оцените статью:
Пока нет голосов
Источник(и):

Хабр