Дорогие читатели, Нашему шестнадцатилетнему, волонтёрскому и некоммерческому проекту для создания новой, современной версии N-N-N.ru, очень нужно посоветоваться касательно платформы нашего сайта – SYMFONY & DRUPAL 8. Платформа не простая, но обещаем – мы не займём много времени, просто нужна консультационная поддержка квалифицированного разраба. Если вы можете помочь, то связаться с нами можно на страницах Facebook.com здесь и здесь.

Нейроэволюция киберкальмаров

Автор оригинала: Job Talle. Искусственные нейронные сети имитируют реальные биологические нервные системы. Они содержат нейроны и связи между ними, обеспечивающие преобразование входящих сигналов в значимый выходной результат. В области машинного обучения эти сети часто инициализируются со случайными связями между нейронами, после чего сеть обучается, пока не начнёт вести себя нужным образом.

Такой подход вполне применим, однако у животных существует множество простых нервных систем, работающих «из коробки»: никто не учит рыбу плавать или бабочек летать, несмотря на то, что их поведение создаётся сетями нейронов. Их нервные системы являются результатом не случайной инициализации и последующего обучения, а эволюции. Спустя множество поколений природа создала такую схему из клеток и связей, которая обеспечивает сложное и успешное поведение.

Для создания нейронных сетей, обеспечивающих поведение без обучения, можно использовать нейроэволюцию. Эволюционные алгоритмы (например, такой, который я использовал для выполнения эволюции растений) подвергают генетический код эволюции в течение долгого периода времени. Генетический код (модель для ДНК) и представляемый им организм изначально очень просты, но в течение многих поколений небольшие мутации увеличивают благоприятную сложность и добавляют функции, стимулирующие дальнейшее распространение этих свойств.

Цифровые кальмары

Чтобы продемонстрировать действие нейроэволюции, я хочу подвергнуть эволюции цифровых кальмаров.

Подробнее
Пожалуйста, оцените статью:
Пока нет голосов
Источник(и):

Хабр